AN IMPROVED SYNTHESIS OF CYCLOPROPANOLS

Gary N. Barber and R. A. Olofson*

Chemistry Department, The Pennsylvania State University

University Park, Pennsylvania 16802

(Received in USA 9 **August** 1976; **received in UK for publication** 7 **September** 1976)

Since cyclopropanols undergo a variety of highly selective ring-opening rearrangements under mild conditions, 1 a major role for these species in complex syntheses might have been anticipated. However, the inadequacies of present routes to secondary cyclopropanols¹ have severely restricted their utility. Probably the best general preparation is that of Schöllkopf^{2,3} in which a β -chloroethyl ether (3) is first formed by trapping an intermediate carbenoid (2) **with an alkene . Subsequent cleavage of 2 with n-butyllithium in a most unusual reaction affords the corresponding cyclopropanols (3.**

$$
\text{CICH}_{2}\text{CH}_{2}\text{OCHCl}_{2} \xrightarrow{\text{MeLi}} [\text{CICH}_{2}\text{CH}_{2}\text{OCH}_{2}] \xrightarrow{\text{CICH}_{2}\text{CH}_{2}\text{OH}} \text{CICH}_{2}\text{CH}_{2}\text{O}\xrightarrow{\text{nBul.i}} \text{HO}\xrightarrow{\text{4}} + \text{CICHCH}_{2}
$$

 $\texttt{Unfortunately, excellent yields (80-90+4)}$ in the conversion, $\underline{3-4}$, are vitiated: (a) by substan tially lower and less consistent yields in the first step, (b) by the inability to use commercial MeLi in the production of 3 (only partly explained by the iodide ion requirement³), and (c) by the relative inaccessibility of <u>1</u> --which is itself the product of a three-step synthesis from **ethylene glycol and ethyl orthoformate. 3 In contrast, chloromethyl B-chloroethyl ether (2) is easily made in one step (684 distilled yield) by reaction of 8-chloroethanol with paraforrnaldehyde and HCZ in dichloroethane. 4 The availability of 2 combined with recent success using the** H⁺arpoon base, lithium 2,2,6,6-tetramethyl piperidide (LiTMP),⁵ to generate simple alkoxycarbenoids by the ¤-elimination of HCl from chloromethyl ethers $\frac{6}{3}$ encouraged us to attempt the adaptation of this process to the formation of 2.

$$
\text{C1CH}_{2}\text{CH}_{2}\text{OH} + \text{HCl} + (\text{CH}_{2}\text{O})_{\text{X}} \longrightarrow \text{C1CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{Cl} \xrightarrow{\text{LiTMP}} [\text{ClCH}_{2}\text{CH}_{2}\text{OH}]
$$

The experiments were begun with some trepidation because of the seemingly insurmountable selectivity requirements imposed on the LiTMP base by the presence of the ClCH₂CH₂O- group. Not only must the earlier preference for α -elimination vs. chloride displacement at the chloro**methyl moiety be retained but similar displacement of chloride from the chloroethyl must be avoided. Moreover, competitive proton abstraction from the chloroethyl group would initiate one of two highly favored β-eliminations (yielding ClCH=CH₂ or a vinyl ether** $\bar{'}$ **) or one of the re** lated pair of α -eliminations. The same potential complications apply to the product (3) which **also must be relatively inert to attack by LiTMP under the reaction conditions.**

To confirm the validity of the proposed LiTMP mediated scheme, $5 \rightarrow [2] \rightarrow 3$, the chloro**methyl ether (5_, 1.1 equiv.) and ethereal LiTMP (1 M, 1 equiv.) were simultaneously added (ca 2 hr.) to a stirred I:1 mixture of ether and cyclohexene (severalfold excess) maintained at 0". Lithium chloride immediately precipitated. After 2-8 hours at room temperature and a workup which included extractions with aqueous 5% citric acid and brine, the predicted syn-anti mixture of 7-(2-chloroethoxy)-norcaranes (5) was isolated by vacuum distillation in 58% yield.**

Data obtained in the similar preparation of other β -chloroethyl cyclopropyl ethers are **summarized in Table I. The distilled product yields --an impressive demonstration of the proton abstraction selectivity which can be achieved with LiTMP -- average even a little higher** than the yields already reported for the analogous attack of EtOCH₂Cl by LiTMP.⁶ Since the ${\tt experiments}$ involving cis- and trans-2-butene (\neg $\underline{10}$ and $\underline{11}$) are stereospecific cis addition **with respect to the alkene and since the various syn-anti ratios in Table I are as expected, the intermediacy of a singlet carbenoid form of 2 can reasonably be assumed. 6 The yield of the norcarane (4, was not very sensitive to reaction temperature (57% at 23*, 58% at O", and 52% at -230) but fell to 23% when the ether was replaced as the solvent by THF and also decreased when less ether was used to dilute the cyclohexene. When reactions in Table I were performed with the alkene as the yield limiting species (to mimic syntheses in which it would be the most expensive component), the product yields were cut in half.**

The distilled products (<u>6</u>-13) were GC pure except for trace contamination by the known CH₂(OCH₂CH₂Cl)₂ in a few cases. This impurity does not interfere but is just destroyed in **the subsequent liberation of the free cyclopropanol by the nBuLi method** $(3\rightarrow 4)$ **. In selecte** examples from Table I, the high published yields³ for this latter process were confirmed.

An interesting complication was encountered on reaction of 5 with LiTMP in the presence of EtOCH=CHa e Along with the cyclopropyl ethers (14cis: 22s yield and 14trans: 45% yield) - and $\text{CH}_2(\text{OCH}_2\text{CH}_2\text{Cl})_2$ (2\$), the product distillate contained another component identified as the **trans-acetal (2, 6% yield). 9, 10 Formation of this side product by the LiTMP-induced elimi-** $\frac{1}{4}$ from $\frac{14}{4}$ trans followed by alkylation of the liberated cyclopropanolate with another molecule of <u>5</u> was confirmed by reaction of a mixture of <u>14</u>-cis and <u>14</u>-trans with **LiTMP at 25°.** After adding <u>5</u> to the mixture, <u>15</u> and recovered <u>14</u> cis were isolated.

Alkene	$\mathbf{Product}^{\mathbf{b,c}}$ $(R$ is $ClCH_2CH_2$	No.	$\underline{\mathtt{Yield}}^\text{d}$	Syn:anti ^e (cis:trans)
Cyclohexene	RO.	$\overline{6}$	58%	1:7.5
Cycloheptene	ROV	$\overline{1}$	62%	1:1.8
Cyclopentene	RO	$\overline{8}$	64%	1:4.5
MeCH-CMe2	Me RO. Me Ńе	$\overline{2}$	81%	1; 1.3
cis-2-Butene	Me RO. Me	10	75%	1.6:1
trans-2-Butene	Me RO Mе	11	69%	
Butadiene	RO. $CH=CH_2$	12	74%	1:1
Dihydropyran	$RO-$	13	55% (bp 79-84° at 1.6 torr ^c)	1.3:1
$EtOCH=CH2$	RO. OEt	14	674 (bp 70-74° at 0.4 torr ^c)	1:2.0

Table I. Reaction of Chloromethyl β-Chloroethyl Ether with LiTMP and Alkenes:

^aReactions performed using optimum procedure in text. $^{\text{b}}$ Properties of compound (<u>6</u>-12) are in accord with literature data (refs. 2,3). "Compounds (13 and 14) are new; satisfactory combustion elemental analyses were obtained; IR, NMR, and mass spectra
data were also in accord with the assigned structures. ^I Yields given are for distilled **products corrected for any impurities.** The only impurity found in 6-13 (by GC) was $CH₂(OCH₂CH₂Cl₂ (sometimes up to 1-3%).$ Sample 14 contained another impurity; see text. ^eRatios determined by GC and NMR analysis. Syn-anti assignments based on data in refs. 2,3 and on the Jackman-Sternhell rule (see ref. 6, footnote 9). Some of the pro**ducts including 14 were also converted to known cyclopropanols or derivatives. -**

$$
\frac{5}{2} \frac{\text{LiTMP}}{\text{EtOCH}^{\bullet}\text{CH}_2} \frac{14 \text{cis}}{14 \text{trans}} + \frac{\text{OEt}}{\text{OCH}_2\text{OCH}_2\text{CH}_2\text{Cl}} \frac{14 \text{trans}}{2 \frac{1}{2} \frac{5}{2}} \frac{15}{4}
$$

The presence of 15 in the product mixture with 14 does not detract from the overall cyclopro- - panol synthesis since <u>15</u> was readily converted to trans-2-ethoxycyclopropanol (isolated as the known pivalate ester lo) **on treatment with nBuLi.**

Further studies are required to rigorously determine and apportion the causes: a) of the $\frac{14}{14}$ cises that the factor of the reader when $\frac{14}{14}$ crass and $\frac{14}{14}$ cises and b) of the increase susceptibility to this elimination of <u>14</u>-trans vs. the cyclopropyl ethers (6-13). In preliminal experiments inductive, steric, and Li⁺ complexation factors have been implicated. For exam**ple, the cis-anti-dimethylcyclopropyl ether (10) reacts faster with LiTMP to give the corresponding cyclopropanol than its cis-syn-isomer. However, both reactions only occur under** more vigorous conditions than the cleavage of 14-trans.

Acknowledgements. We are grateful to Dr. K. D. Lotts for valuable advice. We also thank **the U. S. Public Health Service for a grant (GM 13980) in support of this researc**

References

- 1) **D. H. Gibson and C. H. DePuy, Chem. Revs., 74, 605 (1974); C. H. DePuy, Fortschr. Chem. Forsch., 40, 74 (1973). Cleavages induced by electrophilic, nucleophilic, and radical reagents are known.**
- 2) U. Schöllkopf, Angew. Chem. internat. Edit., 7, 588 (1968).
- **3)** U. Schöllkopf, J. Paust, A. Al-Azrak, and H. Schumacher, Chem. Ber., 99, 3391 (1966); **U. Schflllkopf, J. Paust, and M. R. Patsch, Org. Syn., 2, 86** (1969).
- **4) J. W. Farren, H. R. Fife, F. E. Clark, and C. E. Garland, J. Amer. Chem. Sot., 47, 2419 (1925); S. Mamedov and A. S. Agaev, J. Gen. Chem. U.S.S.R.,** 32, **797 (1962).** Great care in the handling of 5 is advised because of the known carcinogenicity of the rela**ted ClCHsOMe: S. Laskin, M. Kuschner, R. T. Drew, V. P. Capiello, and N. Nelson,** Arch. Environ. Health. 23, 135 (1971).
- **5) R. A. Olofson and C. M. Dougherty, J. Amer. Chem. Sot.,** 95, **581, 582 (1973).**
- **6) R. A. Olofson, K. D. Lotts, and G. N. Barber, Preceding communication.**
- **7)** See text for the cleavage of 3 with nBuLi to the cyclopropanolate and ClCH⁻⁻CH₂. When 3 is heated with KOH or KOtBu, elimination of HCl and formation of the vinyl ether readily
- <u>2</u>,3
- **8) R. F. Webb, A. J. Duke, and L. S. A. Smith, J. Chem. Sot., 4307 (1962).**
- **9)** New compound; satisfactory combustion analysis and spectral data; also cleaved to the **cyclopropanolate which was isolated as the known trans-2-ethoxycyclopropyl pivalate.** Alkylation of the cyclopropanolate with 5 also yielded 15.
- **10) R. A. Olofson, K. D. Lotts, and G. N. Barber, Tetrahedron Letters, In press.**